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1 Definition

1.1 Parametrisation in sets:

Let X be a non empty set. A parametrisation of X is a map p : A → X defined
on a Euclidean domain.
We denote the set of all parametrisations in X by ’Param(X)’.

1.2 Diffeology.

Given a nonempty set X. Any subset P of ’Param(X)’ is said to be the diffeol-
ogy on set X if it satisfies the following three axioms:

(1) (Covering) The constant parametrisations belongs to set P.
(2) (Locality) Let p : A → X be a parametrisation in X.Then p belongs to

P if for every point a of A, there is an open neighbourhood B of a such that
p|B belongs to P.

(3) (Smooth Compatibility) For all p ∈ P, for every real domain B and for
every smooth map f : B → A, the composite p ◦ f : B → X belongs to P.

The pair (X,P) is a diffeological space where X is the underlying set with
its diffeology P.

1.2.1 Example 1.

The set of all smooth parametrisation in a domain A of Rn is a diffeological
space.

1.3 Plots of the Diffeological Space.

The elements of the diffeology P of the diffeological space X are called the plot
of the diffeological space X.
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1.4 Diffeological Smooth Map.

GivenX1 andX2 are two diffeological spaces. We say that the map g : X1 → X2

is diffeologically smooth map if for every plot p of X1, the composition g ◦ p is
a plot of X2 .

1.4.1 Example 1.

Every infinitely differentiable maps from Rm to Rn are diffeological smooth
maps.

1.5 Subset Diffeology.

Suppose the pair (X,D) is a diffeological space and Y is a subset of X.
Then, the subset diffeology on set Y is the set of all plots in D with the image
in Y.

1.5.1 Example 1.

Let A = [0, 1]× {0, 1} ∪ {0, 1} × [0, 1] be a square and A ⊂ R× R.

The set of the parametrisations of the square which, regarded as a parametri-
sations of R× R are smooth , is a diffelogical space.
Such diffeology is a subset diffeology with respect to the diffeolgical space R×R.

1.6 Quotient Diffeology.

Let X be a diffeological space and let ϕ : X → Y (= X/ ∼) be the quotient map
where ∼ is an equivalence relation on X.

The set of all plots p : U → Y is said to be the the quotient diffeology on
set Y if for every u ∈ U , there is an open neighbourhood V of u and a plot
p′ : V → X such that ϕ ◦ p′ = p|V.

1.6.1 Example 1.

Let S1 = {z ∈ C : zz̄ = 1} ⊂ C be a circle. The parametrisations p : U → S1

satisfying: for all u in U , there exists an open neighbourhood V of u and a
smooth parametrisation p′ : V → R such that p|V : r 7→ exp(2πip′(r)) forms a
quotient diffeology of R and S1 ≃ R/Z.
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1.6.2 Example 2.

Let α ∈ R−Q. Let Tα be the quotient set R/(Z + αZ). Let ϕα : R → Tα

be the quotient map. Let D be the set of parametrisations p : U → Tα such
that for all u ∈ U, there exists an open neighbourhood V of u and a smooth
parametrisation p′ : V → R such that p|V = πα ◦ p′.
Then, D forms a quotient diffeology of Tα

1.7 Dimension of a diffelogical space.

Let X be a space equipped with the diffeology D. The dimension of X, denoted
by dim(X), is defined as the infimum of the dimension of the generating families
F of D.

That is:
dim(X) = inf{dim(F)|F ⊂ D and D = ⟨F⟩}

where dim(F) = sup{dim(F )|F ∈ F}

Also, note that if U ∈ Domains(Rn), then dim(U) = n

But, if the diffeology D has no generating family with finite dimension, then
dim(X) = ∞

Also, the dimension is a diffeological invarint.(Art 1.79 of [IZ])

1.8 Pushforward of diffeologies.

Given (X,D) is a diffeological space and Y is any set. The pushforward of the
diffeology D of X by any map f : X → Y is defined as the finest diffeology of
Y such that the map f is smooth.
We denote it by f∗(D).

1.9 Subduction.

Consider a map f : X → Y between two diffeological spaces X and Y . We say
that the map f is a subduction if it holds the following conditions:

a. f is surjective.
b. The diffeology D′ of Y is the pushforward of the diffeology D of X.That

is f∗(D) = D′
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2 Dimension of Rn/O(n,R) and half lines.

2.1 Dimension of Rn/O(n,R)
Assume that O(n) is the group of rotations and reflections of Rn and Rn/O(n,R)
is the quotient diffeological space obtained via the equivalence relation induced
by O(n).

Set, for each natural number n,∆n = Rn/O(n,R)

We shall first establish the following two statements and we then deduce the
dimension of Rn/O(n,R) = n.

1. ∆n is equivalent to the set [0,∞) equipped with the pushforward of the
standard diffeology of Rn by the function vn : Rn → [0,∞) with vn(x) = ||x||2

2. The plot vn can not be lifted locally at the point 0 along a p -plot with
p < n.

Claim 1:
The quotient space ∆n is equivalent to the set [0,∞) equipped with the push-
forward of the standard diffeology of Rn by the function vn : Rn → [0,∞) with
vn(x) = ||x||2

Proof:
For x, x′ ∈ Rn, x ∼ x′ if there exists an element A of O(n,R) such that

x′ = Ax.

Let [0,∞) be the set and the map vn : Rn → [0,∞) be a surjection such
that vn(x) = ||x||2

Moreover, ||x|| = ||x′|| iff x′ = Ax for some A in O(n,R). Thus there is a
bijection between the orbits of O(n,R).
Suppose that πn : Rn → ∆n is the projection map from Rn onto its quotient.
Now, there is a natural bijection map f : ∆n → [0,∞) such that f ◦ πn = vn.

Since in each quotient diffeology, the projection class is a subduction f ◦πn =
vn is subduction. Applying the definition of smooth maps from quotients, we
get,

f ◦ πn = vn is subduction if and only if f is subduction.
Hence, by the uniqueness of quotients, f is differomishm.( Art 1.52 of [IZ])
Thus the map f : class(x) → vn(x) is a diffeomorphism from ∆n to a set

[0,∞) where [0,∞) is equipped with the push forward diffeology of Rn by vn.

Diagram:
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Rn

∆n [0,∞)

πn
vn

f

Claim 2: The plot vn can not be lifted locally at the point 0 along a p -plot
with p < n.

Proof: Suppose that the space ([0,∞),Dn) is the representation of ∆n where
Dn is the pushforward of the standard diffeology of Rn by vn.
Also, the elements of Dn consists of the parametrisations which locally can be
lifted along vn by smooth parametrisations of Rn.

Assume that 0k represents the zero of Rk. Since dim(vn) = n, the dimen-
sion of ∆n ≤ n.

Suppose, if possible, the plot vn, an element of Dn, can be lifted at the point
0n along a p-plot P : U → ∆n,with dim(P ) = p < n.

So, there is a smooth parametrisation ϕ : V → U such that P ◦ ϕ = vn|V
Without loss of generality, suppose that P (0p) = 0 and ϕ(0n) = 0p.

Again, since P ∈ Dn, it can also be lifted locally at the poiint 0p along vn.
Then, there is a smooth parametrisation g : H → Rn such that vn ◦ g = P |H
where H is an open subset of U containing 0p.

Commutative diagram:

H

V ′ [0,∞) Rn

ϕ|V ′

vn|V ′ vn

P |H g

Set V ′ = ϕ−1(H),F = g ◦ ϕ|V ′

Then, vn|V ′ = vn ◦ F with F ∈ C∞(V ′,Rn), 0n ∈ V ′ and F (0n) = 0n

That is: ∥|x||2 = ∥|F (x)||2

Taking first derivative,

∀x ∈ V ′ and ∀∆x ∈ Rn, we have 2 · x ·∆x = 2 · F (x) ·D(F )(x) ·∆x
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But , at the point 0n, F (0n) = 0n,
the second derivative gives [D(F )(0n)]

t · [D(F )(0n)] = 1n

Denote C = [D(F )(0n)] and Ct is the transpose matrix of C. Also, we have
F = g ◦ ϕ|V ′.
We can further write D(F )(0n) = D(g)(0p) ◦D(ϕ)(0n)

D(F )(0n) = A ◦ B where A = D(g)(0p) and B = D(ϕ)(0n) and A and B
are both tangent linear maps at the points 0p and 0n respectively.

So clearly A belongs to the space of linear maps from Rp to Rn and B be-
longs to the space of linear maps from Rn to Rp.

Now, D(F )(0n) = D(g)(0p) ◦D(ϕ)(0n)
D(F )(0n) = AB
C = AB and
1n = CtC = BtAtAB

Since B belongs to the space of linear maps from Rn to Rp, the rank of the
B must be less or equal to p.

But by our hypothesis, dim(P ) = p < n
and it further implies that the rank of 1n is also less than n.

This is a contradiction since the rank of 1n is n. Hence , the plot vn can not
be lifted locally at the point 0 along a p -plot with p < n.

Now,
For the dimension of Rn/O(n,R).

Since vn is the generator of the diffeology of ∆n = O(n,Rn) which is rep-
resented by the space ([0,∞), Dn), the set F = {vn} is a generating family for
∆n

So, dim(∆n) = inf{dim(F)|F ⊂ ∆n and ∆n = ⟨F⟩} ≤ n.

Further assume that dim(∆n) = p where p < n. vn can be lifted locally at
the point 0n along an element P ′ of some generating family F ′ for ∆n since vn
is a plot of ∆n. This implies dim(F ′) = p

So, we have dim(P ′) ≤ p < n, which is not possible by our claim 2: the plot
vn can not be lifted locally at the point 0n along a p -plot with p < n.

This means we must have dim(∆n) = n

Also,
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Since the dimension is diffeological invariant, for all n ̸= m∆n = Rn/O(n,R)
and ∆m = Rm/O(m,R) are not diffeomorphic. (Art 1.79 of [IZ])

2.2 Dimension of the half line.

Suppose ∆∞ = [0,∞) ⊂ R is equipped with the subset diffeology D∞. We shall
show that dim(∆∞) = ∞

For this, let dim(∆∞) = N where N is a finite number. Define a map
vn : Rn → ∆∞ by vn(x) = ||x||2 and vn are plots of ∆∞

Also, vn are smooth parametrisations of R and vn(x) = ||x||2 lies in D∞.

So vn can be lifted locally at the point 0n along some p-plot of ∆∞ with
p ≤ N where P ∈ D∞ with dim(P ) = p.
Again, for any n > N , there is a smooth parameterisation f : U → R such that
the function values lies in [0,∞). This means f is a p- plot of ∆∞ and there
exists a smooth parametrisation ϕ : V → U such that f ◦ ϕ = vn|V .

Diagram:

U

V [0,∞)
vn|V

f
ϕ

Without loss of generality, suppose 0p ∈ U and ϕ(0n) = 0p.
Then f(0p) = 0.

Also, we have f ◦ ϕ = vn|V.

Taking the first derivative of vn at a point x on V ′ and V ′ = ϕ−1(V ),

we get D(f)ϕ(x) ◦D(ϕ)(x) = x

since f ∈ C∞(U,R) , non-negative and f(0) = 0 , we get D(f)(0p) = 0

Again, taking second derivative at the point 0n,

we get 1n = [D(ϕ)(0)]t[D2(f)(0)][D(ϕ)(0)]

The matrix D(ϕ)(0) represents the tangent map of f at 0p But, since n > N
was choosen and p ≤ N , we have p < n.
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So, the tangent map D(ϕ)(0) of f at 0p has a non zero kernel and then it
implies that matrix [D(ϕ)(0)]t[D2(f)(0)][D(ϕ)(0)] is degenerate.

This is not possible since 1n is not degenerate. Hence the dimension of
∆∞ = ∞.
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